Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.

نویسندگان

  • D E Ehmann
  • J W Trauger
  • T Stachelhaus
  • C T Walsh
چکیده

BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) domains within the synthetase by thioester linkages. Characterizing C domain substrate specificity is important for the engineered biosynthesis of new compounds. RESULTS We synthesized a series of aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) and show that they are small-molecule substrates for NRPS C domains. Comparison of rates of peptide bond formation catalyzed by the C domain from enterobactin synthetase with various aminoacyl-SNACs as downstream (acceptor) substrates revealed high selectivity for the natural substrate analog L-Ser-SNAC. Comparing L- and D-Phe-SNACs as upstream (donor) substrates for the first C domain from tyrocidine synthetase revealed clear D- versus L-selectivity. CONCLUSIONS Aminoacyl-SNACs are substrates for NRPS C domains and are useful for characterizing the substrate specificity of C domain-catalyzed peptide bond formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains.

The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amin...

متن کامل

Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.

Aminoacyl-tRNA synthetases (aaRSs) are ancient and evolutionary conserved enzymes catalyzing the formation of aminoacyl-tRNAs, that are used as substrates for ribosomal protein biosynthesis. In addition to full length aaRS genes, genomes of many organisms are sprinkled with truncated genes encoding single-domain aaRS-like proteins, which often have relinquished their canonical role in genetic c...

متن کامل

Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling.

We describe competitive activity-based protein profiling (ABPP) to accelerate the functional prediction and assessment of adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) in proteomic environments. Using a library of sulfamoyloxy-linked aminoacyl-AMP analogs, the competitive ABPP technique offers a simple and rapid assay system for adenylating enzymes and provides insight int...

متن کامل

Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases.

We describe a general strategy for selective chemical labeling of individual adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using active site-directed proteomic probes coupled to the 5'-O-N-(aminoacyl)sulfamoyladenosine (AMS) scaffold with a clickable benzophenone functionality. These proteomic tools can greatly facilitate the molecular identification, functional characteri...

متن کامل

Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog.

Cyclodipeptides are secondary metabolites biosynthesized by many bacteria and exhibit a wide array of biological activities. Recently, a new class of small proteins, named cyclodipeptide synthases (CDPS), which are unrelated to the typical nonribosomal peptide synthetases, was shown to generate several cyclodipeptides, using aminoacyl-tRNAs as substrates. The Mycobacterium tuberculosis CDPS, Rv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2000